
Guide to the getPass Package

September 5, 2024

Drew Schmidt

wrathematics@gmail.com



Version 0.2-1



Disclaimer

Any opinions, �ndings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily re�ect the views of the National Science Foundation. The �ndings and
conclusions in this article have not been formally disseminated by the U.S. Department of Health &
Human Services nor by the U.S. Department of Energy, and should not be construed to represent any
determination or policy of University, Agency, Administration and National Laboratory.

This manual may be incorrect or out-of-date. The author(s) assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

This publication was typeset using LATEX.

© 2015�2017 Drew Schmidt.

Permission is granted to make and distribute verbatim copies of this vignette and its source provided the
copyright notice and this permission notice are preserved on all copies.
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1 Introduction

getPass [5] is an R package for reading user input in R with masking. There is one exported function,
getPass(), which will behave as R's readline() but with masked input. You can pass a message to the
password input via the msg argument, similar to the prompt argument in readline().

1.1 Installation

You can install the stable version from CRAN using the usual install.packages():

1 install.packages("getPass")

The development version is maintained on GitHub. You can install this version using any of the well-
known installer packages available to R:

1 ### Pick your preference

2 devtools :: install_github("wrathematics/getPass")

3 ghit:: install_github("wrathematics/getPass")

4 remotes :: install_github("wrathematics/getPass")

2 Password Reading

Using the package should mostly amount to calling getPass::getPass(). Currently there are two
arguments to getPass(). By setting the msg parameter, you can change what is printed in the password
dialogue box:

1 getPass ()

2 ## PASSWORD: ****

3 ## [1] "asdf"

4

5 getPass(msg="")

6 ## ****

7 ## [1] "asdf"

8

9 getPass(msg="shh , it's a secret! ")

10 ## shh , it 's a secret! ****

11 ## [1] "asdf"

Finally, there is the forcemask �ag, which indicates if reading without masking should be possible. By
default, if one is running under an environment that does not allow reading with masking, then a warning
message will be printed, and R's ordinary readline() will be used. However, if this �ag is set to TRUE,
then the function will stop with an error.

2.1 Interfaces

The form that password input takes will vary based on how you interface to R (with implementation
details below). If you use RStudio, it will look something like this:
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If you use RGui on Windows or R.app (if tcltk is supported; see Section 4 below), it will look like:

Finally, if you use the terminal (any OS), it will look like:

We believe this covers pretty much everyone. One notable exclusion is emacs in an environment without
tcltk. Due to how it handles bu�ers, I believe it can't be supported. If that is incorrect, please let us
know!

3 Password Hashing

3.1 The Short Version

After reading in a password that you intend to store (or in some way �pass around�), always hash it using
a cryptographic hashing function. Some options for hashing with R include:

� argon2 https://cran.r-project.org/package=argon2 [4]

� sodium https://cran.r-project.org/package=sodium [3]

� bcrypt https://cran.r-project.org/package=bcrypt [1]

� openssl https://cran.r-project.org/package=openssl [2]

3.2 The Long(er) Version

In an e�ort to keep the package as minimal as possible, we do not include any methods for hashing
passwords. However, the suggested package argon2 [4] contains an implementation of the argon2()
secure password hashing function. Many experts (of which I am not one) have written at length about

https://cran.r-project.org/package=argon2
https://cran.r-project.org/package=sodium
https://cran.r-project.org/package=bcrypt
https://cran.r-project.org/package=openssl


4 IMPLEMENTATION DETAILS 3 of 4

this topic; and it can quickly get kind of complicated and mathy. The basic idea is: don't store passwords
as plaintext. We can use a secure hash function to hash the password, basically turning the input string
into a new �garbled� string. Hash functions are hard to �invert�, so you can know which hash function I
used and know the output, and still (hopefully) not recover the original string.

We can quickly handle this problem without having to think very hard. Say you used getPass to read
a password into the variable pass:

1 pass

2 ## [1] "myPassw0rd!"

An excellent choice to be sure. This is the �plaintext�. We can hash it with a call to the argon2 packages's
pw_hash() function:

1 hash <- argon2 ::pw_hash(pass)

2 hash

3 ## [1] "$argon2i$v=19$m=8192,t=16,p=2$JeV26p9ZmnlFyHKUWCe/46

E3q2dtaXzuHO6L4Qg15IEgkNrOawOI5TnxI +6 yLFRmLUZG6R4GJK0BTAkZhKgItg$

MdafxeYEstYyT3RWyj2DDDcBAhfi8dE30tn6L1/

Xaaus5su5Xiq2fdnD2zCK39DXTUyGWsOTTTZzGxKw1O4mtg"

4 attr(,"hashtype")

5 [1] "argon2"

Now say you need to validate a password that's been entered against the hashed password. All you need
to do is call pw_check():

1 argon2 ::pw_check(hash , pass)

2 ## [1] TRUE

3 argon2 ::pw_check(hash , "password")

4 ## [1] FALSE

5 argon2 ::pw_check(hash , "1234")

6 ## [1] FALSE

So inside of a user-facing application, the process might look something like this:

1 user_pw <- getPass :: getPass ()

2 hash_pw <- argon2 ::pw_hash(user_pw)

3 store_user_pw(hash_pw) # pseudocode , but you get the idea

There are good reasons to prefer argon2: it is lightweight (with no package or system dependencies) and
it is believed to be very secure. However, there are other options available in R, including the bcrypt,
sodium, and openssl packages.

4 Implementation Details

4.1 RStudio

To use this with RStudio, you need:

� RStudio desktop version >= 0.99.879.

� The rstudioapi package version >= 0.5.

In this case, the getPass() function wraps the rstudioapi function askForPassword().
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4.2 Command Line

Here, the input reader is custom C code. It has been tested successfully on Windows (in the �RTerm�
session), Mac (in the terminal, not R.app which will not work!), Linux, and FreeBSD. The maximum
length for a password in this case is 255 characters.

On Windows, the reader is just _getch(). On 'nix environments (Mac, Linux, . . . ), masking is made
possible via tcsetattr(). Special handling for each is provided for handling ctrl+c and backspace.

If you discover a problem using this, please �le an issue report.

4.3 RGui (Windows)

If you use RGui (the Windows R GUI), then this should use the tcltk package. I don't think it's actually
possible for tcltk to be unavailable on Windows, so if you are an RGui user and have trouble with this,
please �le an issue report.

4.4 R.app (Mac)

You will need to install dependencies for the tcltk package. I'm not completely sure what this process in-
volves for Macs; if you know, please let us know. If tcltk is unavailable, then it will use the �unsupported�
method below.

4.5 Other/Unsupported Platforms

When a platform is unsupported, the function will optionally default to use R's readline() (without
masking!) with a warning communicated to the user, or it can stop with an error.
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