
Introducing the float package:

32-Bit Floats for R

September 7, 2024

Drew Schmidt

wrathematics@gmail.com

Version 0.2-4

Acknowledgements and Disclaimer

Any opinions, �ndings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily re�ect the views of the National Science Foundation. The �ndings and
conclusions in this article have not been formally disseminated by the U.S. Department of Health &
Human Services nor by the U.S. Department of Energy, and should not be construed to represent any
determination or policy of University, Agency, Administration and National Laboratory.

This manual may be incorrect or out-of-date. The author(s) assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

This publication was typeset using LATEX.

Permission is granted to make and distribute verbatim copies of this vignette and its source provided the
copyright notice and this permission notice are preserved on all copies.

Contents

1 Introduction 1

1.1 Installation . 1
1.2 BLAS and LAPACK Libraries . 1

2 For Users 1

2.1 Basics . 1
2.2 Arithmetic and Type Promotion . 3

3 For Developers 3

3.1 Basics . 3
3.2 Compiled Code . 4
3.3 Linking and Additional Functions . 5

4 Some Benchmarks 6

4.1 Covariance . 7
4.2 Principal Components Analysis . 7

References 8

2 FOR USERS 1 of 8

1 Introduction

R has a "numeric" type for vectors and matrices. This type must be either integer or double precision.
As such, R has no real ability to work with 32-bit �oats. However, sometimes single precision (or less!)
is more than enough for a particular task. The �oat package [9] extends R's linear algebra facilities to
include single precision (�oat) data. Float vectors/matrices have half the precision of their "numeric"-type
counterparts, for a performance vs accuracy trade-o�.

The internal representation is an S4 class, which allows us to keep the syntax identical to that of base R's.
Interaction between base types for binary operators is generally possible. In these cases, type promotion
always defaults to the higher precision (more on this in Section 2.2). The package ships with copies of the
single precision 'BLAS' and 'LAPACK', which are automatically built in the event they are not available
on the system.

1.1 Installation

You can install the stable version from CRAN using the usual install.packages():

1 install.packages("float")

The development version is maintained on GitHub. You can install this version using any of the well-
known installer packages available to R:

1 remotes :: install_github("wrathematics/float")

Note that for best performance, you will need to build the package from source, either from the GitHub
repository or from the CRAN source distribution. See Section 1.2 for more details as to why a source
installation is recommended.

1.2 BLAS and LAPACK Libraries

The linear algebra operations in the �oat package are handled by the BLAS and LAPACK [7, 2]. By
default, R will not ship with the single precision versions of these functions, so we include a source
code distribution within the package. This is the "reference" or NetLib implementation, which is not
particularly e�cient. Additionally, compiling these can take a very long time.

To take advantage of the enhanced run-time performance and reduced compilation times of using tuned
BLAS/LAPACK with �oat, you will need to choose an implementation and install it. Typical implemen-
tations include OpenBLAS [12], Intel MKL [6], AMD ACML [1], Atlas [11], and Apple's Accelerate [3].
You can read more about using di�erent BLAS implementations with R in the R Installation and Ad-
ministration manual [10].

Once you switch BLAS implementations with R, you will need to rebuild the �oat package from source.

2 For Users

2.1 Basics

R does not have a 32-bit �oat type (hence the package). You can cast your data from integer/numeric
to �oat using fl() (you can also cast a �oat to a numeric via dbl()):

1 library(float)

2

3 x = matrix (1:9, 3)

2 FOR USERS 2 of 8

4 x

5 ## [,1] [,2] [,3]

6 ## [1,] 1 4 7

7 ## [2,] 2 5 8

8 ## [3,] 3 6 9

9

10 s = fl(x)

11 s

12 ## # A float32 matrix: 3x3

13 ## [,1] [,2] [,3]

14 ## [1,] 1 4 7

15 ## [2,] 2 5 8

16 ## [3,] 3 6 9

This will of course require 1.5x the memory of the input matrix (storing it as both a double and as a
�oat). For work�ows requiring many operations, the memory savings will still be substantial. At this
time, we do not have a reader, so casting is the best way to go. However, once you cast the matrix to a
�oat, you can serialize it as usual with save() and/or saveRDS().

For testing or other cases where random matrices are needed (e.g., PCA via random normal projec-
tions [5]), we include several random generators. The functions flrunif() and flrnorm() are somewhat
like R's runif() and rnorm() in that they produce vectors (but also matrices) of �oating point random
uniform/normal values:

1 set.seed (1234)

2

3 flrunif (5)

4 ## # A float32 vector: 5

5 ## [1] 0.1137034 0.6222994 0.6092747 0.6233795 0.8609154

6 flrunif(2, 3)

7 ## # A float32 matrix: 2x3

8 ## [,1] [,2] [,3]

9 ## [1,] 0.640310585 0.2325505 0.5142511

10 ## [2,] 0.009495757 0.6660838 0.6935913

11 flrunif(5, min=10, max =20)

12 ## # A float32 vector: 5

13 ## [1] 15.44975 12.82734 19.23433 12.92316 18.37296

Arbitrary generators can be used with the flrand() interface. It behaves more like R's runif(), rnorm(),
etc., except that it accepts a generator function for its �rst argument. For example:

1 flrand(generator=rexp , n=5, rate =.1)

2 ## # A float32 vector: 5

3 ## [1] 8.624105 6.745913 8.380404 7.604303 18.800766

4 flrand(function(n) sample(5, size=n, replace=TRUE), 5)

5 ## # A float32 vector: 5

6 ## [1] 2 2 2 1 1

This is conceptually similar to �rst generating n random values and then casting them over to �oats, but
more memory e�cient. The function processes the generator data in 4KiB chunks (for double precision
generators).

3 FOR DEVELOPERS 3 of 8

2.2 Arithmetic and Type Promotion

Perhaps a mistake in hindsight, but �oats and numeric vectors/matrices will interoperate with each other
in binary arithmetic operations. So you can multiply 2L, 2.0, and fl(2) in any binary combination you
like. But the output will be determined by the highest precision; in fact, the arithmetic itself will be
carried out in the highest possible precision. So adding a �oat matrix with a double matrix is really just
adding 2 double matrices together after casting the �oat up (which uses quite a bit of additional memory)
and returning a double matrix.

This even works for more complicated functions like %*% (matrix multiplication). For example:

1 set.seed (1234)

2 x = matrix (1:4, 2)

3 y = flrunif(2, 2)

4

5 x

6 ## [,1] [,2]

7 ## [1,] 1 3

8 ## [2,] 2 4

9 y

10 ## # A float32 matrix: 2x2

11 ## [,1] [,2]

12 ## [1,] 0.1137034 0.6092747

13 ## [2,] 0.6222994 0.6233795

14

15 x %*% y

16 ## # A float32 matrix: 2x2

17 ## [,1] [,2]

18 ## [1,] 1.980602 2.479413

19 ## [2,] 2.716604 3.712067

20

21 storage.mode(x) = "double"

22 x %*% y

23 ## [,1] [,2]

24 ## [1,] 1.980602 2.479413

25 ## [2,] 2.716605 3.712067

Long story short, be careful when mixing types.

3 For Developers

3.1 Basics

A float32 matrix/vector is really a very simple S4 class. It has one slot, @Data, which should be an
ordinary R integer vector or matrix. The values of that integer matrix will be interpreted as �oats in the
provided methods. If you wish to create your own method, say using C kernels or Rcpp [4], then you will
have to play the same game. More on that later.

To create a float32 object, use float::float32():

1 Data = 1:3

2 x = float32(Data)

3 x

4 ## # A float32 vector: 3

3 FOR DEVELOPERS 4 of 8

5 ## [1] 1.401298e-45 2.802597e-45 4.203895e-45

To access the integer data of a float32, just grab the @Data slot:

1 > x@Data

2 ## [1] 1 2 3

In general there's no relationship between the integer vs �oat interpretations of the values residing in the
same block of memory, with the exception of 0:

1 x = fl (0:3)

2 x@Data

3 ## [1] 0 1065353216 1073741824 1077936128

4 dbl(x+x)

5 ## [1] 0 2 4 6

6 (x+x)@Data

7 ## [1] 0 1073741824 1082130432 1086324736

8 x@Data + x@Data

9 ## [1] 0 2130706432 NA NA

10 ## Warning message:

11 ## In x@Data + x@Data : NAs produced by integer overflow

So when creating new functionality not provided by existing �oat package methods, you will probably
have to move to compiled code.

3.2 Compiled Code

Using 32-bit �oats from �oat in compiled code is not terribly di�cult, but maybe a bit annoying. The
general way to proceed for a 32-bit �oat x is:

� Pass x@Data (an integer) to .Call()

� Inside the C/C++ function, use a float pointer to the integer data.

� Return from .Call() an integer vector/matrix.

� Put the return from .Call() (say ret) in the float S4 class: float32(ret).

One can access the data with the FLOAT() macro. If writing an R package, add �oat to the LinkingTo

list in the package DESCRIPTION �le. Then add #include <float/float32.h> and the macro will be
available. If you are working outside the construct of a package (not recommended), then you can de�ne
the macro as follows:

1 #define FLOAT(x) ((float *) INTEGER(x))

This is the "DATAPTR" way of doing things, similar to REAL() for double precision and INTEGER for ints.
There is no Rcpp-like idiom for �oats similar to NumericVector and NumericMatrix at this time.

Here's a basic example of how one would create a new function add1() (ignoring that we could just do
x+1) using C. We will do this outside of a package framework for simplicity of demonstration, but again,
it is recommended that you use the LinkingTo way mentioned above.

add1.c

1 #include <Rinternals.h>

3 FOR DEVELOPERS 5 of 8

2 #include <R.h>

3

4 #define FLOAT(x) ((float *) INTEGER(x))

5

6 SEXP R_add1(SEXP x_)

7 {

8 SEXP ret;

9 PROTECT(ret = allocVector(INTSXP , 1));

10

11 float *x = FLOAT(x_);

12 FLOAT(ret)[0] = x[0] + 1.0f;

13

14 UNPROTECT (1);

15 return ret;

16 }

Note that using INTEGER(ret)[0] instead of FLOAT(ret)[0] on line 12 above is not correct. That would
�rst cast the value to an integer before storing the data. Then back at the R level, once put in the
float32 class, that integer value would be treated as though it were a float. If that explanation doesn't
make sense, try modifying the above to the wrong thing and see what happens.

We can build that function with R CMD SHLIB add1.c, and then call it via:

add1.r

1 dyn.load("add1.so")

2 library(float)

3

4 add1 = function(x)

5 {

6 ret = .Call("R_add1", x@Data)

7 float32(ret)

8 }

9

10 add1(fl(1))

11 ## # A float32 vector: 1

12 ## [1] 2

13 add1(fl(pi))

14 ## # A float32 vector: 1

15 ## [1] 4.141593

Like I said, not really di�cult, but annoying.

3.3 Linking and Additional Functions

If you are writing C/C++ code on single precision vectors and matrices, there is a good chance that
you will need to link with the �oat package. For sure if you want to e�ciently do linear algebra (say
via BLAS/LAPACK or you are using the �oat interface from Armadillo via RcppArmadillo [?]), you will
need to do this for CRAN safety1. To do this, you will need to set the LDFLAGS line of your src/Makevars
�le to include something like this:

FLOAT_LIBS = ` ${R_HOME}/ bin$ {R_ARCH_BIN}/ Rscr ipt =e " f l o a t : : : l d f l a g s () " `

1If you are just working on your own machine and linking with high-performance BLAS/LAPACK, then no linking is
necessary. For portability, you need to link.

4 SOME BENCHMARKS 6 of 8

PKG_LIBS = $ (LAPACK_LIBS) $ (BLAS_LIBS) $ (FLIBS) $ (FLOAT_LIBS)

By default, float:::ldflags() will try to dynamically link on Linux and Mac, but you can force static
linking via float:::ldflags(static=TRUE). In my opinion, dynamic linking is preferential, but you are
free to make up your own mind about that. However, dynamic linking to an R package shared library is
(I think?) impossible on Windows. So Windows will always statically link.

In addition to BLAS and LAPACK symbols, there are a few helpers available. First, we include �oat
values NA_FLOAT and R_NaNf, which are 32-bit analogues to NA_REAL and R_NaN.

int ISNAf (const f loat x) ;
int ISNANf(const f loat x) ;

which you can �nd in the float/float32.h header.

Finally, we also provide float:::cppflags() for the PKG_CPPFLAGS include �ags. But using the LinkingTo
�eld should usually be su�cient (i.e., you don't need it most of the time). One notable exception is if
you are doing something goofy with a di�erent compiler, like nvcc where you may need to explicitly pass
the include �ags.

4 Some Benchmarks

We will be examining two common applications from statistics which are dominated by linear algebra
computations: covariance and principal components analysis. The setup for each of these benchmarks is:

1 library(float)

2 library(rbenchmark)

3 set.seed (1234)

4

5 reps = 5

6 cols = c("test", "replications", "elapsed", "relative")

7

8 m = 7500

9 n = 500

10 x = matrix(rnorm(m*n), m, n)

11 s = fl(x)

All benchmarks were performed using 2 cores of on an Intel Core i5-5200U (2.20GHz CPU) laptop running
Linux and:

� gcc 7.2.0

� R version 3.4.2

� libopenblas 0.2.20

Note that the benchmarks are highly dependent on the choice of BLAS library and hardware used. The
cache sizes for this machine are:

1 memuse ::Sys.cachesize ()

2 ## L1I: 32.000 KiB

3 ## L1D: 32.000 KiB

4 ## L2: 256.000 KiB

5 ## L3: 3.000 MiB

4 SOME BENCHMARKS 7 of 8

4.1 Covariance

Since covariance is just the crossproducts matrix xTx on mean-centered data, we can very easily create
a custom covariance function:

1 custcov = function(x)

2 {

3 s = scale(x, TRUE , FALSE)

4 crossprod(s) / max(1L, nrow(x) -1)

5 }

This function will work for numeric inputs as well as 32-bit �oats. We can compare these two cases
against R's internal covariance function:

1 benchmark(custcov(x), custcov(s), cov(x), replications=reps , columns=

cols)

2 ## test replications elapsed relative

3 ## 3 cov(x) 5 8.113 43.385

4 ## 2 custcov(s) 5 0.187 1.000

5 ## 1 custcov(x) 5 0.719 3.845

R's cov() is clearly not designed with performance in mind. The performance di�erence between the
custcov(s) (�oat) and custcov(x) (double) calls should only be about 2x. The higher performance we
see is likely due to the fact that our implementation of scale() is better than R's. We can compare this
to a highly optimized implementation of covariance, namely covar() from the coop package [8]:

1 benchmark(custcov(s), coop:: covar(x), replications=reps , columns=cols)

2 ## test replications elapsed relative

3 ## 2 coop:: covar(x) 5 0.358 1.817

4 ## 1 custcov(s) 5 0.197 1.000

This looks more in line with what we would expect moving from double to single precision.

4.2 Principal Components Analysis

PCA is just SVD with some statistical window dressing:

1 pca = function(x)

2 {

3 p = svd(scale(x, TRUE , FALSE), nu=0)

4 p$d = p$d / max(1, sqrt(nrow(x) - 1))

5 names(p) = c("sdev", "rotation")

6

7 p

8 }

Once again, our function will work for both numeric inputs as well as 32-bit �oats. We again compare
the performance of these two cases against R's internal function (in this case, prcomp()):

1 benchmark(pca(x), pca(s), prcomp(x), replications=reps , columns=cols)

2 ## test replications elapsed relative

3 ## 2 pca(s) 5 1.592 1.000

4 ## 3 pca(x) 5 3.663 2.301

5 ## 1 prcomp(x) 5 4.293 2.697

REFERENCES 8 of 8

Again, our improved scale() implementation is giving an edge (and possibly because prcomp() is doing
more useful work, as opposed to cov(). . .), although it is much less pronounced here since the SVD
calculation is dominating. Indeed, the overall run time is roughly 10x higher here for the single precision
PCA case compared to the single precision covariance calculation.

References

[1] AMD. Core math library (acml). URL http://developer. amd. com/acml. jsp, 2012.

[2] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel, Jack Don-
garra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, et al. LAPACK
Users' guide. SIAM, 1999.

[3] Apple. Accelerate. URL https://developer.apple.com/documentation/accelerate, 2017.

[4] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of
Statistical Software, 40(8):1�18, 2011.

[5] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217�
288, 2011.

[6] Intel Corporation. Intel Math Kernel Library (Intel MKL). http://software.intel.com/en-us/
intel-mkl.

[7] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Transactions on Mathematical Software (TOMS), 5(3):308�323,
1979.

[8] Drew Schmidt. Co-Operation: Fast Correlation, Covariance, and Cosine Similarity, 2016. R package
version 0.6-0.

[9] Drew Schmidt. �oat: Single Precision Floats, 2017. R package version 0.1-0.

[10] R Core Team. R installation and administration. https://cran.r-project.org/doc/manuals/

r-release/R-admin.html#BLAS.

[11] R Clint Whaley and Jack J Dongarra. Automatically tuned linear algebra software. In Proceedings
of the 1998 ACM/IEEE conference on Supercomputing, pages 1�27. IEEE Computer Society, 1998.

[12] Zhang Xianyi, Wang Qian, and Zaheer Chothia. Openblas. URL: http://xianyi. github. io/Open-
BLAS, 2012.

http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS

	Introduction
	Installation
	BLAS and LAPACK Libraries

	For Users
	Basics
	Arithmetic and Type Promotion

	For Developers
	Basics
	Compiled Code
	Linking and Additional Functions

	Some Benchmarks
	Covariance
	Principal Components Analysis

	References

